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The final event in the long 
evolution of the Gawler Craton: 
new constraints on 1450 Ma 
metamorphism and magmatism
Laura Morrissey1, 2, Karin Barovich2, Martin Hand2, Katherine Howard2, Justin Payne1 and Anthony Reid3 
1 School of Natural and Built Environments, University of South Australia	 2 School of Physical Sciences, University of Adelaide 
3 Geological Survey of South Australia, Department for Energy and Mining

New geology

Introduction
Potential field data across the northern Gawler 
Craton reveal structural fabrics and a number of 
large plutonic bodies that suggest the region has 
a complex tectono-metamorphic and magmatic 
evolution (Fig. 1). Existing geochronological studies 
confirm this complex history, with multiple phases of 
magmatism between c. 2530–1750 Ma (Howard et 
al. 2011; Reid et al. 2014) and the recognition of 
at least three high temperature metamorphic events 
at 1730–1685 Ma, 1600–1580 Ma and c. 1520 
Ma (Payne et al. 2008; Cutts, Hand and Kelsey 
2011; Reid et al. 2014). Mineral and petroleum 
exploration drillholes into some of the structural 
features of the region to the northwest of the Mabel 
Creek Ridge recovered gneissic rocks with migmatitic 
rock textures as well as undeformed granite (Figs 
1, 2). Interpreted basement geological maps of the 
northern Gawler Craton previously attributed these 
granitic rocks to the c. 1600–1570 Ma Hiltaba Suite 
(Fairclough, Schwarz and Ferris 2003; Howard et al. 
2011), therefore extending the footprint of Hiltaba 
Suite magmatism across the whole Gawler Craton.

Recent work conducted as part of the Source 
to Spectrum Australian Research Council (ARC) 
Linkage Project (Payne et al. 2018) has revealed 
that at least three drillholes in the northern Gawler 
Craton record metamorphism and magmatism at 
1463–1444 Ma, and that the granite bodies are 
part of a distinct, c. 1450 Ma thermal event rather 
than part of the Hiltaba Suite (Morrissey et al. in 
press). Here, we provide an overview of the results 
published in our open access article in Geoscience 
Frontiers (Morrissey et al. in press), with a focus on 
the significance of this event for the Gawler Craton.

Geology of the northern Gawler 
Craton
The poorly exposed northern Gawler Craton 
comprises four geophysically defined domains, 
the Peak and Denison Inlier, the Mount Woods 
Domain, Coober Pedy Ridge and the Nawa Domain 
(Fig. 1). These domains are separated from the 
Mulgathing Complex in the central Gawler Craton 
by the crustal-scale Karari Shear Zone (Fig. 1). The 
drillholes containing c. 1450 Ma magmatic and 
metamorphic rocks are from the Nawa Domain 
(Fig. 1). The Nawa Domain is the northernmost 
domain of the Gawler Craton and is almost entirely 
under cover. As a result, the basement geology is 
inferred from sparse drillholes and geophysics. 
Lithologies intersected in drill core in the Nawa 
Domain include orthogneiss with magmatic 
crystallisation ages of c. 2530 Ma (Reid et al. 
2014) and 1780–1750 Ma (Howard et al. 2011) 
and metasedimentary rocks deposited between 
1740–1720 Ma (Payne, Barovich and Hand 2006). 
The Nawa Domain predominantly records Kimban 
Orogeny aged metamorphism (c. 1730–1690 Ma; 
Payne et al. 2008; Howard et al. 2011; Reid et al. 
2014). High-grade reworking of the southern Nawa 
Domain occurred at c. 1600–1550 Ma (Payne et 
al. 2008; Cutts, Hand and Kelsey 2011) and one 
drillhole (GOMA 4; Fig. 1) also provides enigmatic 
evidence for metamorphism at c. 1520 Ma (Reid et 
al. 2014).

Drillholes sampled: rock types 
and analyses conducted
Three diamond drillholes were sampled as part 
of the Morrissey et al. (in press) study (Table 1). 
Drillhole OBD 09 intersected strongly foliated 

https://doi.org/10.1016/j.gsf.2018.07.006
https://doi.org/10.1016/j.gsf.2018.07.006
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Figure 1	  (a) Interpreted simplified solid geology map of the Gawler Craton, after Reid et al. (2014). (b) Total 
magnetic intensity reduced-to-pole image of the northern Gawler Craton, showing major geophysically defined domains. 
Geochronological data from drillholes of interest are from Reid et al. (2014). Reprinted from Morrissey et al. (2018; fig. 1) 
without locality map.
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of cordierite. They display a gneissic foliation 
defined by alternating biotite- and K-feldspar-rich 
layers. Leucosomes that are semi-concordant to 
discordant to the foliation are bounded by biotite–
garnet melanosomes up to 1 cm in width (Figs 
2a–c). Some of the leucosomes contain garnet and/
or pseudomorphed cordierite. Therefore, the peak 
assemblages are interpreted to have developed in 
the presence of melt.

Pressure–temperature pseudosections for two 
samples from OBD 09 were calculated using the 
phase equilibria modelling program THERMOCALC. 
These suggest that peak conditions involved 
temperatures of 775–815 °C and pressures of 3.2–
5.4 kbar (Fig. 3), corresponding to high apparent 
thermal gradients of >45 °C/km. The high apparent 
thermal gradients may reflect pluton-enhanced 
metamorphism, consistent with the presence of 
coeval A-type granites in drillholes OBD 08 and 
Karkaro 1. A sample of garnet-bearing migmatitic 
gneiss from drillhole OBD 09 gives a monazite age 
of 1444 ± 10 Ma (Fig. 4a), interpreted to date the 
timing of granulite facies metamorphism.

Age and character of magmatism
The granite in OBD 08 is medium-grained and 
contains K-feldspar, plagioclase, quartz and 
minor biotite. The K-feldspar is unaltered, but the 
plagioclase has been altered and hematite stained 
(Fig. 2e). Karkaro 1 intersects granite with coarse- 
and fine-grained phases (Fig. 2f). The two phases 
are mineralogically identical and contain K-feldspar 
phenocrysts, plagioclase, quartz and minor biotite 
that are aligned in what appears to be a magmatic 
flow foliation. As in OBD 08, plagioclase has 
been altered. Granitic rocks in both drillholes are 
undeformed.

garnet–biotite-bearing gneiss that displays evidence 
for partial melting (Figs 2a–d). Two drillholes 
(OBD 08 and Karkaro 1) intersected unfoliated 
granite (Figs 2e–f). Samples from OBD 09 were 
used for metamorphic modelling and monazite 
geochronology to constrain the conditions and 
timing of metamorphism. Samples from OBD 08 
and Karkaro 1 were used for monazite and zircon 
geochronology and geochemistry to determine the 
age and character of magmatism.

Analytical methods
Whole-rock chemical compositions of two samples 
of migmatitic gneiss from OBD 09 were obtained 
by X-ray fluorescence at Franklin and Marshall 
College, Pennsylvania. Phase equilibria models 
were calculated using THERMOCALC v3.40, using 
the internally consistent dataset, ds62, of Holland 
and Powell (2011) and activity–composition models 
re-parameterised for metapelitic rocks in the system 
MnNCKFMASHTO (MnO–Na2O–CaO–K2O–FeO–
MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) (Powell et al. 
2014; White et al. 2014; White, Powell and Johnson 
2014). Whole-rock geochemical compositions of 
magmatic rocks from OBD 08 and Karkaro 1 were 
obtained from Amdel Limited, South Australia. U–Pb 
zircon and monazite geochronology was done by 
laser ablation - inductively coupled plasma - mass 
spectroscopy (LA-ICP-MS) at Adelaide Microscopy, 
the University of Adelaide.

Pressure–temperature conditions 
and timing of metamorphism
The gneissic basement rocks intersected in OBD 09 
contain garnet, biotite, plagioclase, K-feldspar, 
quartz, minor pyrite and amorphous magnesium-
rich clay interpreted to reflect the former presence 

Table 1	 Sample locations and summary 

Drillhole SA Geodata 
drillhole 
number

Easting* Northing* SA Geodata 
sample 
number

Sample interval 
(m)

Age (Ma)† Lithology

OBD 09 1592 293375 6809107 1643403 389.30–389.80 — Migmatitic garnet–cordierite–biotite 
gneiss

2163654A 390.27–390.38 — Migmatitic garnet–cordierite–biotite 
gneiss

2163654B 390.38–390.47 — Garnet–cordierite-bearing 
leucosome

660842 391.95–392.25  — Migmatitic garnet–biotite gneiss

2163655 400.31–400.41 — Migmatitic garnet–biotite gneiss

1643405 396.10–396.50 1444 ± 10 
(monazite)

Migmatitic garnet–biotite gneiss

OBD 08 1577 286298 6788087 1643401 180.00–180.40 1458 ± 9 
(monazite)

Granite

2131380 183.00–184.00 1463 ± 15 
(zircon)

Granite

Karkaro 1 3552 380270 6835938 637614 477.39–477.57 1442 ± 9 
(monazite)

Fine-grained granite

637615 479.70–480.01 1463 ± 8 
(monazite)

Coarse-grained granite

* GDA94, zone 53; † LA-ICP-MS U–Pb.
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2(a) Crosscutting leucosomes bounded by 
garnet–biotite melanosomes 1 cm in width, 
OBD 09, 396.75 m. (Photo 416750)

2(d) Thick section of garnet–cordierite-
bearing leucosome in 2(c) showing euhedral 
quartz and cordierite porphyroblasts and 
interstitial K-feldspar OBD 09, 390.40 m. 
(Photo 416753)

2(b) Garnet–biotite gneiss, OBD 09, 
390.30 m. (Photo 416751)

2(e) Medium-grained phase of granite, 
OBD 08, 180.00 m. (Photo 416754)

2(c) Crosscutting garnet–cordierite-bearing 
leucosome, OBD 09, 390.40 m. 
(Photo 416752)

2(f) Coarse-grained phase of Karkaro 
granite, Karkaro 1, 479.70 m. 
(Photo 416755)

Figure 2	 Photographs of lithologies from core yielding c. 1450 Ma ages. Reprinted from Morrissey et al. (2018; fig. 2).
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LA-ICP-MS U–Pb monazite geochronology was 
collected from two samples from Karkaro 1 and 
one sample from OBD 08. The three samples give 
U–Pb monazite ages between 1463 ± 8 Ma and 
1442 ± 9 Ma (Fig. 4b–d). Zircon geochronology 
was only possible from OBD 08, as the zircon 
grains from the Karkaro 1 samples were metamict 
and could not be analysed to provide meaningful 
age data. The zircon ages from OBD 08 come 
from bright, weakly zoned cores and define two 
populations at 1722 ± 26 Ma and 1463 ± 15 Ma 
(Fig. 4e). The oldest ages are consistent with the 
c. 1730–1690 Ma Kimban Orogeny, which affected 
much of the northern Gawler Craton (e.g. Payne et 
al. 2008). Therefore, the older ages are interpreted 
to be inherited from the source region or to have 
been entrained during melt emplacement. The 
younger (1463 ± 15 Ma) zircon age population 
is within uncertainty of the monazite age of 1458 
± 9 Ma for the same granite. Therefore, it is likely 
that the c. 1450 Ma monazite ages in each of the 
granitic samples reflects the timing of crystallisation 
of the granites.

Geochemistry and Sm–Nd isotope data from 
Morrissey et al. (in press) show these granites have 
high K2O of 6.3–7 wt%, steep light rare earth 
element patterns, high Ga/Al values and initial εNd 
values of –14 to –8.7 (Fig. 5). These data suggest 
the granites are ‘A-type’ (Whalen, Currie and 
Chappell 1987) and derived predominantly from the 
melting of Archean crust.
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Implications for the Gawler 
Craton
It is difficult to determine the wider spatial footprint 
and tectonic setting of 1450 Ma metamorphism 
due to the limited number of drillholes that intersect 
basement. One possible interpretation of this newly 
documented c. 1460–1440 Ma metamorphic 
event in the northern Gawler Craton is that it was 
driven by magmatism and is therefore relatively 
spatially localised. However, the drillholes containing 
c. 1460–1440 Ma magmatic and metamorphic 
rocks encompass a region of approximately 
1,000 km2 (Fig. 1; Table 1), and the presence of 
crustally derived, A-type magmatism in drillholes 
OBD 08 and Karkaro 1 indicates a larger region 
of elevated temperatures in the lower crust. 
Furthermore, 40Ar/39Ar thermochronological data 
(Fraser, Reid and Stern 2012) and apatite U–Pb 
data (Hall et al. 2018) from throughout the Nawa 
Domain indicate a broader thermal event at this 
time. A possible tectonic scenario that could produce 
distributed elevated heat flow is regional extension.

Elsewhere in the Gawler Craton, there is evidence 
for a possible extensional regime at c. 1500–
1400 Ma, most notably with deposition of the 
Pandurra Formation in the Cariewerloo Basin (Beyer 
et al. 2018). The Pandurra Formation is interpreted 
to have been deposited in half grabens in fluvial 
and lacustrine paleoenvironments as part of a 
continental rift system after c. 1490 Ma (Beyer et 
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al. 2018). After deposition, fluid flow events in the 
Pandurra Formation occurred at c. 1450–1420 Ma 
(Cherry et al. 2017; Beyer et al. 2018). Lithospheric-
scale shear zones in the Gawler Craton, including 
the Karari, Tallacootra, Coorabie and Kalinjala 
shear zones (Fig. 1a), were active or were 
re-activated between 1470–1450 Ma (Foster and 
Ehlers 1998; Swain et al. 2005; Fraser and Lyons 
2006; Thomas, Direen and Hand 2008; Fraser, 
Reid and Stern 2012), confirming the presence of 
regional deformation in this interval. Therefore, it 
is possible that the high temperatures in the Nawa 
Domain, reactivation of crustal-scale shear zones 
across the craton and the formation of a significant, 
intracontinental sedimentary basin in the central-
eastern Gawler Craton are all part of a coherent 
tectonic regime dominated by extension.

Implications for Mesoproterozoic 
mineral potential or fluid flow 
events
The mineral potential associated with the 
widespread record of c. 1450 Ma deformation, 
metamorphism, magmatism and sedimentation 
across the Gawler Craton remains uncertain. 
There is no known mineralisation within the 
northern Gawler Craton, which was the region 
most significantly affected by this Mesoproterozoic 
thermal event. Nevertheless, the presence of 
high-crustal level granites in some portions of 
the northern Gawler Craton may suggest the 
potential for mineralisation related to these 
intrusions, or possibly related to fluid flow driven 
by the combination of deformation, magmatism 
and associated sedimentary basin formation in 
an overall extensional environment. The redbed 
successions of the Carriewerloo Basin could have 
provided a source of fluid that interacted with 
basement in the central and eastern Gawler Craton. 
Indeed, recent evidence for clasts of sandstone 
correlated with the Pandurra Formation occurring 
within the Olympic Dam Breccia Complex suggests 
that this sedimentary basin did interact with the 
basement rocks (Cherry et al. 2017). The timing of 
the second phase of deformation and fluid flow that 
incorporated the Pandurra Formation sandstone 
into the Olympic Dam Breccia Complex is uncertain 
(Cherry et al. 2017), but it may plausibly correlate 
to the c. 1460–1440 Ma event. Hence, there is 
potential that fluid flow could have occurred within 
the basement across the Gawler Craton, especially 
within shear zones related to the development of 
the Carriewerloo Basin. Shear zones are therefore 
targets for mineral exploration as potential conduits 
of high temperature fluids related to the c. 1450 Ma 
event.
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Introduction
The Source to Spectrum project (S2S) is focused 
on understanding the formation and likelihood 
of preservation of the spectrum of base and 
precious metal deposits associated with the 
c. 1595–1570 Ma Hiltaba Suite and Gawler Range 
Volcanics magmatic event (Payne et al. 2017). This 
sees us shifting the focus of research away from 
the extensively discussed and researched Olympic 
iron oxide – copper–gold (IOCG) province to the 
regions of the Gawler Craton that have received less 
attention in the past decade. This article provides a 
brief overview of the research that is currently being 
undertaken, initial results from a number of studies 
and upcoming outputs from the project.

The right time and place
One module of the S2S project is focused 
on constraining the age of alteration and 
mineralisation, and the age of the host lithologies 
and their metamorphic history. To date this work 
has focused on the Mount Woods Domain, southern 
Gawler Range Volcanics region, and Central Gawler 
Gold Province. Some of the key findings to date are:

•	 A Wallaroo Group equivalent metasedimentary 
host has been determined for the Barns gold 
prospect that was metamorphosed during the 
Kimban Orogeny. This adds to the range of 
host lithologies for gold mineralisation, already 
including the Tarcoola Formation, Tunkillia 
Suite granites and Archean gneisses, and 
further demonstrates that the host lithology and 
metamorphic grade is not a primary control on 
deposit formation.

•	 Host volcanics of the Paris silver deposit are 
confirmed as lower Gawler Range Volcanics 
(1592 Ma; Fig. 1). Attempts to constrain the 
age of a second rhyolite dyke that is related to 
mineralisation have not been successful so far.

•	 Granulite facies metamorphism within the central 
and eastern Mount Woods Domain is dominantly 
Kimban Orogeny aged (Fig. 2). This provides 
renewed potential for preservation of upper 
crustal c. 1590 Ma mineral deposits in these 
regions, as opposed to exhumation of mid-to-
lower crustal c. 1590 Ma granulite facies rocks 
which would have resulted in the erosion of any 
mineral deposits. Preliminary interpretations 
suggest c. 1590 Ma metamorphism and 
recrystallisation is dominantly related to 
discrete shear zone movement, intrusions and/
or alteration systems. Monazite from a garnet-
bearing granitic gneiss preserves a Sleafordian 
Orogeny crystallisation age, providing the first 
evidence for Archean – early Paleoproterozoic 
crust in the Mount Woods Domain (Janicki 2018).

•	 A-type magmatism and high thermal gradient 
metamorphism in the Karkaroo and OBD series 
drillholes in the Nawa Domain are constrained to 
c. 1450 Ma (Morrissey et al. in press).

Development of titanite U–Pb laser ablation - 
inductively coupled plasma - mass spectroscopy 
(LA-ICP-MS) geochronology in South Australia as 

Figure 1	 Lower Gawler Range Volcanics, host to the 
Paris silver deposit, drillhole PPDH001, 111.93–113.85 m. 
(Courtesy of Investigator Resources; photo 416756)
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experimental work is focused on determining the 
role of minerals such as scapolite in the generation 
of halogen and sulfur-rich fluids in the mid-crust 
during metamorphism (regional or contact) as a 
non-magmatic source of fluids. This will be used to 
assess the importance of basin-fill sequences in the 
generation of mineral deposits such as IOCGs.

The Central Gawler Gold Province has previously 
been the focus of research but those studies 
were unable to conclusively determine if the 
gold deposits were driven by metamorphic or 
magmatic processes. S2S is reassessing this issue 
by investigating deposits with a wider variety of host 
lithologies and undertaking an in-depth study of the 
mafic and volcanic dykes that are near ubiquitous in 
the deposits.

Ongoing research on the broader Hiltaba Suite 
intrusives is investigating the spatial variation 
in the composition of their crust and mantle 
components. Preliminary results highlight the 
widespread presence of an anomalously enriched 
or contaminated mantle reservoir. We are yet to 
determine the importance of this compositional 
reservoir for mineral deposit formation.

part of S2S means we are now able to rapidly 
determine the age of titanite-bearing alteration and 
mineralisation systems. The first application of this 
method is to a range of skarn Cu–Au/Au and iron 
sulfide – copper–gold mineralisation systems, with 
results to be presented at the Geological Survey of 
South Australia Discovery Day 2018. We are also 
interested in knowing of any drillholes in the Gawler 
Craton that contain titanite formed during alteration 
and mineralisation. To this extent we would be 
pleased to hear from any geologists who know of 
such drillholes.

Research efforts in the coming year will focus on 
obtaining precise age constraints on gold, silver 
and base metal deposits to determine if they can be 
directly linked to certain phases of activity within the 
Gawler Range Volcanics and Hiltaba Suite.

Metal and fluid sources
Studies are in progress at Monash University 
and the University of South Australia looking 
at the generation and character of fluids in the 
full spectrum of mineralising systems in the 
Gawler Craton. Phase equilibria modelling and 

!(Ì

!(Ì

!(Ì

!(

!(

!(

!(!( !(

!(

Southern Overthrust

Karari Shear Zone

Mount Woods Domain

STUART
H

IG
H

W
A

Y

  SR2
1580–1485 Ma  

CD93 4
1695–1675 Ma

WC05D00194ACD 40
1705 Ma

DDHARMN 1
1690 and 1550 Ma

TORCH 93RC 5
1570 Ma

FIRE IN THE SKY
2420 and 1710 Ma

CAIRN HILL

PECULIAR KNOB

PROMINENT HILL

136°0'E

136°0'E

135°45'E

135°45'E

135°30'E

135°30'E

135°15'E

135°15'E

29
°1

5'
S

29
°1

5'
S

29
°3

0'
S

29
°3

0'
S

29
°4

5'
S

29
°4

5'
S

")

")

")

")

")

Area of
interest

Marla

Woomera

ADELAIDE

Tarcoola

Coober Pedy

0 10 20 30 km

205092-005

!( Drillhole
!(Ì Major mine

Archean to early
Mesoproterozoic fault

Mount Woods Domain

GDA 94:Projection Zone 53

High : 21718.9 Low : -14177.8
NanoTeslas (nT)

Figure 2	 Total magnetic intensity reduced-to-pole image of the Mount Woods Domain with sampled drillholes and 
representative U–Pb monazite geochronology ages. Ages provided are rounded to nearest 5 Ma to provide an indicator of 
the age ranges present.

http://www.energymining.sa.gov.au/minerals/knowledge_centre/events/geological_survey_of_south_australia_discovery_day_2018
http://www.energymining.sa.gov.au/minerals/knowledge_centre/events/geological_survey_of_south_australia_discovery_day_2018


14 MESA Journal 88   2018 – Issue 3

Exploration

Complementing the Central Gawler Gold Province 
and magmatic geochemistry study is a stable isotope 
and trace element geochemistry investigation into 
the deposits and prospects distributed across the 
southern Gawler Range Volcanics province. Initial 
results indicate that Barns gold and Paris silver are 
consistent with a magmatic petrogenesis (Morrissey 
et al. 2017). Skarn-style deposits have variable 
crustal input with a recycled Archean component 
present in the Weednanna Au–Fe skarn.
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 Kanmantoo copper deposit

Introduction
The Kanmantoo copper deposit describes a cluster 
of eight zones of Cu–Ag–Au mineralisation located 
~2.5 km southwest of Kanmantoo township, 41 km 
southeast of Adelaide. Hydrothermal chalcopyrite–
pyrite–pyrrhotite–magnetite mineralisation is 
concentrated in structurally controlled zones 
within biotite, quartz, andalusite, chlorite, garnet 
± staurolite schist within the western limb of the 
Kanmantoo syncline. Copper production began in 
the late 1840s with underground mining of small 
high-grade lodes, followed by open pit mining 
in 1970–76 (Verwoerd and Cleghorn 1975) and 
most recently in 2011 to present, with expanded 
open pit operations by Hillgrove Resources. Past 
production and current resource estimates give a 
metal endowment at Kanmantoo of around 0.35 Mt 
of copper, 3 Moz of silver and 100 koz of gold 
(Rolley and Wright 2017). Estimated remaining total 
mineral resources, as at 31 December 2017, were 
31.8 Mt at 0.6% Cu, 0.1 g/t Au, 1.3 g/t Ag, for 
cutoff grade 0.2% Cu (Hillgrove Resources 2018). 

Continuous spectral analysis of selected drill core 
from various mineralised zones at Kanmantoo 
was completed recently by the Geological Survey 
of South Australia in collaboration with Hillgrove 
Resources to map mineralogy and mineral 
associations. The results have been used to assist 
with interpreting proximity to mineralisation. This 
article provides an overview of the project and 
findings. The approach may be useful in assessing 
the potential for further mineralisation within known 
ore systems at Kanmantoo and offers a means of 
acquiring high data density for evaluating patterns 
of hydrothermal activity identified in exploration drill 
samples from other copper targets in the district.

Geological setting and 
mineralisation
Copper mineralisation at Kanmantoo is hosted by 
the Tapanappa Formation within the Cambrian 
Kanmantoo Group, a 7–8 km thick package of 
dominantly marine turbidite sediments deposited 
in an extensional back-arc basin, the Kanmantoo 
Trough (Haines, Jago and Gum 2001). The 
sedimentary pile was accumulated over a 
comparatively short 8 ± 5 Ma period between 
522 ± 2 to 514 ± 3 Ma (Foden et al. 2006). 
The Tapanappa Formation consists of a largely 
monotonous sequence of immature sandstone 
(greywacke) with muddy siltstone interbeds and 
minor pyritic mudstone (Toteff 1999). In addition to 
the Kanmantoo deposit, the sequence hosts several 
smaller deposits of Cu–Au mineralisation (e.g. 
Bremer, South Hill) and scattered occurrences and 
deposits of Pb–Zn–Ag, some of which have been 
mined (e.g. Angas, Wheal Ellen, Aclare, Strathalbyn, 
Scotts Creek) (Belperio et al. 1998; Both 1990; 
Gum 1998; Seccombe et al. 1985; Spry, Schiller 
and Ross 1988; Toteff 1999). Much of the Pb–Zn–
Ag mineralisation is stratabound and coincident 
with sites of apparent alteration of the sediment, 
expressed as zones of quartz–biotite–garnet–
andalusite ± staurolite rock that can be traced 
intermittently for ~30 km from north of Kanmantoo, 
south towards Strathalbyn   (Fig. 1) (Seccombe et 
al. 1985; Toteff 1999; Pollock et al. 2018). The 
garnetiferous rocks are broadly anomalous in Pb, 
Zn, Cu and Mn (Pollock et al. 2018). The pattern 
of alteration and distribution of mineralisation, 
particularly Pb–Zn–Ag, in the Tapanappa Formation 
are interpreted as evidence of synsedimentary 
hydrothermal exhalative activity with metals 
deposited from heated basin fluids channelled along 
growth faults accompanying extension of the basin 
(Flöttmann et al. 1984; Seccombe et al. 1985; Toteff 
1999).
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Figure 1	 Geology of the Kanmantoo region showing the location of Kanmantoo Cu–Au deposit and regional Pb–Zn–Ag (Cu–
Au) and Cu–Au deposits (updated from Toteff 1999).
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Sedimentation in the Kanmantoo Trough ceased 
with the onset of the Delamerian Orogeny during 
the mid-Cambrian (514 Ma). Compressive 
deformation was accompanied by emplacement 
of syntectonic I- and S-type granitoids along the 
eastern Kanmantoo Trough, with A-type granite and 
mafic and felsic dykes intruded during post-tectonic 
(490–480 Ma) relaxation and extension (Belperio 
et al. 1998; Foden et al. 2002). Three phases of 
deformation are recognised with D1 NW-directed 
thrusting imparting bedding parallel schistosity that 
was overprinted by axial plane crenulation cleavage 
developed during D2 upright open to tight folds with 
dominantly N–S axes and gentle southerly plunges 
(Offler and Fleming 1968). Kanmantoo Syncline 
is a D2 structure that includes an open synformal 
structure that plunges ~15°S. A parasitic syncline 
of the Kanmantoo Syncline occupies two-thirds of 
the main pit at the Kanmantoo mine (Rolley and 
Wright 2017; Schiller 2000). Later deformation, D3, 
developed open to tight folds about NW–SE axes, 
which are rarely evident at Kanmantoo where the 
D3 event is usually observed only as crenulations 
and kinks (Schiller 2000). Metamorphism was high 
temperature (550–600 °C), low pressure (3–5 kb) 
and reached amphibolite facies in the region of 
Kanmantoo with peak metamorphism possibly 
post D2, reflected in iron-rich garnet growth and 
recrystallisation of biotite in discordant zones 
that also contain chlorite and sulfides (Rolley and 
Wright 2017). This is in contrast with pre to early 
D2 peak metamorphism in the Karinya Syncline in 
Kanmantoo Group rocks some 80 km to the north 
of the mine area (Sandiford et al. 1995).

Mineralisation at Kanmantoo is discordant to 
bedding but is broadly aligned with D2 schistosity 
on the western synform limb (Schiller 2000). The 
discordance is explained in sedimentary exhalative 
models as a subsurface hydrothermal feeder zone 
with remobilisation of sulfides during metamorphism 
(Pollock et al. 2018; Spry, Schiller and Ross 
1988; Toteff 1999). An alternative model favours 
emplacement of Cu–Ag–Au mineralisation post peak 
metamorphism with mineralising fluids introduced 
by igneous intrusion at depth and circulated along 
reactivated D2 and crosscutting NNE and NE 
structures; metal deposition resulted from interaction 
of fluids with reactive host rocks or a decrease in 
the thermal gradient (Arbon 2011; Lyons 2012; 
Oliver et al. 1998; Rolley and Wright 2017; Tedesco 
2009).

Despite some lingering controversy with regard 
to the origin of the Cu–Au–Ag mineralisation at 
Kanmantoo, the data collected in previous and 
ongoing studies point to a role for spectral analysis 
and mineral mapping. In particular, attention was 
directed to:

•	 amphibolite-grade metamorphic minerals 
equated with possible zones of hydrothermally 
altered sediments (e.g. andalusite, garnet, 
staurolite, spinel)

•	 mineral alteration indicative of later hydrothermal 
fluid interactions (e.g. reduction in andalusite 
content, change in garnet or biotite composition, 
crystallisation and composition of chlorite, 
presence of carbonate or sulfate minerals)

•	 minerals most closely associated with copper 
mineralisation (chlorite–sulfides–magnetite). 

The objective was to collect and analyse continuous 
spectral data of drill core to provide a mineralogical 
model that characterised alteration zoning around 
copper mineralisation at Kanmantoo, which could 
be used to assist in improving the effectiveness of 
subsequent brownfields drilling.

Spectral scanning and analysis
Continuous spectral data from drill core were 
collected using the HyLogger 3.3 instrument 
located at the South Australia Drill Core Reference 
Library at Tonsley. HyLogger 3.3 has a bank of four 
instruments – camera, visible-shortwave infrared 
(VSWIR; 400–2,500 nm) spectrometer, thermal 
infrared (TIR; 6,000–14,500 nm) spectrometer 
and a laser altimeter – under which core trays are 
moved on a robotic table. The collation of the data 
from these four instruments delivers an interactive 
digital file which enables the identification of a 
suite of minerals from a well characterised spectral 
library (Schodlock et al. 2016; Schodlock Green and 
Huntington 2016).

Fourteen legacy diamond drillholes were selected to 
encompass the breadth, lateral and vertical extent 
of the Kanmantoo copper mineralisation (Table 1; 
Fig. 2).

Based on previous investigations identifying key 
mineral components of the deposit that showed 
spectral responses in the shortwave infrared (SWIR) 
and TIR the following minerals were selected for 
more detailed analysis: kaolin/jarosite, white mica, 
andalusite, garnet (almandine), biotite and chlorite.

Variation in andalusite content was associated 
with persistent, but minor amounts, of kaolin and 
jarosite, not previously reported but evident in SWIR 
data recorded by HyLogger and quantified using 
the Spectral Assistant (TSA) software in the Spectral 
Geologist (TSG) software (Schodlock et al. 2016). 
The significance of kaolin/jarosite was further 
investigated using scanning electron microscopy 
(SEM) on selected samples from KTDD149. 
Fragments of drill core were mounted on aluminium 
stubs using araldite and coated with carbon. These 
were examined at Adelaide Microscopy on a 
FE Quanta 600 SEM with energy dispersive X-ray 
analytical facility.
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For white mica, the identification and relative 
abundance were calculated using TSA. Variation in 
the chemistry of the white mica was assessed based 
on the position of the wavelength minima for the 
2,200 nm absorption feature.

Andalusite is a highly visible component in the 
core samples and forms white poikiloblastic 
porphyroblasts in biotite schist with varying degrees 
of coherence. The andalusite grains range from 
compact euhedral grains up to 2 cm in length 
overprinting the schistosity to somewhat diffuse 
masses, grading further to ghost outlines in the core.

Spectral absorption features for andalusite overlap 
with garnet. In order to map relative abundance 
of andalusite the TIR spectra were interpreted with 
the aid of polynomial fitting (PFIT). By focusing on 
the 10,365 nm absorption feature (Fig. 3) subtle 
contributions from andalusite were measured using 
the wavelength position. Andalusite abundance was 
calculated from the depth of the feature.

Garnet is a complex mineral with a wide range of 
chemical composition which may be present within 
a single grain, typically as concentric zones of 
varying composition. Major element compositions 
of garnet in the Kanmantoo deposit were 
measured by McPherson (2017) and results from 
the Kavanagh orebody are shown in Table 2. The 
analyses record garnet as dominantly almandine 
(Fe garnet), with lesser components of pyrope 
(Mg garnet) and spessartine (Mn garnet). The 
resolution of the HyLogger spectra (1 cm x 1 cm 
sample per spectra) means that the TIR spectra 
will be a composite of those individual species. 
This provides an opportunity to map geochemical 
gradients reflected in the change in overall garnet 
composition, determined by measuring wavelength 
shifts in the characteristic absorption features. To 
identify almandine, PFIT was used focusing on the 
wavelength of the 11,279 nm feature (Fig. 3) and 
the depth was used to estimate abundance. To 
measure changing chemistry, the wavelength of the 
10,710 nm absorption feature was extracted. This 
was intended to map the proportion of Fe-garnet 
almandine (10,710 nm) relative to Mn-garnet 
spessartine (10,860 nm).

In hot hydrothermal systems, trioctahedral micas 
may be recrystallised with modified chemistry due 
to interaction with the hydrothermal fluid. At the 
Yangyang iron oxide – apatite deposit, South Korea, 
Kim et al. (2018) report hydrothermally altered 
biotite with modified SWIR spectral response, where 
the wavelengths of key absorption features were 
used to map change in visible colour and Fe:Mg 
ratio. The abundance of biotite at Kanmantoo 
offered the opportunity to investigate similar 
correlations in relation to copper mineralisation. To 
calculate an appropriate measure of geochemical 

0.3–1.0% Cu
1–3% Cu
>3% Cu
Biotite schist
Garnet–andalusite
– biotite schist
Open pit outline

205092_014

KAN01 HyLogger Scanning

Figure 2	 Distribution of copper across orebodies at 
Kanmantoo showing location of drillholes included in the 
initial spectral analysis investigation.

Table 1	 Legacy drillholes selected for analysis from 
orebodies within the Kanmantoo copper deposit 

Drillhole SA Geodata 
drillhole number

Orebody or target

DDH KAN 2 206089 Distal North

KTRCD304 304265 Matthew

KTDD071 * East Kavanagh

KTDD149 290347 East Kavanagh

KTDD150 * Kavanagh

KTDD165 * Kavanagh

KTDD052 * West Kavanagh

KTDD160 290348 Kavanagh

KTDD153 * Spitfire

KTRCD284 * Nugent

KTDD089 * Nugent

KTDD129 * Paringa

KTDD127 * Emily Star

DDH KAN 1 206088 Distal South

* Number will be assigned in first quarter 2019.

https://minerals.sarig.sa.gov.au/Details.aspx?DRILLHOLE_NO=206089&TAB_NO=6
https://minerals.sarig.sa.gov.au/Details.aspx?DRILLHOLE_NO=304265&TAB_NO=6
https://minerals.sarig.sa.gov.au/Details.aspx?DRILLHOLE_NO=290347&TAB_NO=6
https://minerals.sarig.sa.gov.au/Details.aspx?DRILLHOLE_NO=290348&TAB_NO=6
https://minerals.sarig.sa.gov.au/Details.aspx?DRILLHOLE_NO=206088&TAB_NO=6
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Table 2	  Average major element compositions for garnet 
from Kavanagh orebody (from McPherson 2017) 

Sample number 54-2 54-3 54-4 54-9

Depth (m) 6.00 10.70 13.90 25.60

n 6 3 9 6

SiO2 36.21 36.31 36.31 36.91

TiO2 0.01 0.00 0.03 0.01

Al2O3 21.05 20.l0 20.26 20.57

FeO 39.49 39.29 38.37 36.67

MnO 1.53 1.18 2.22 3.81

MgO 1.89 2.16 1.90 2.42

CaO 0.24 0.23 0.30 0.35

Total 100.42 99.28 99.38 100.73

Number of atoms in formulae (oxygen basis 12)

Si 2.955 2.995 2.993 2.991

Ti 0.001 0.000 0.002 0.001

Al 2.025 1.954 l.968 1.965

Fe 2.695 2.710 2.644 2.486

Mn 0.106 0.083 0.155 0.262

Mg 0.230 0.266 0.233 0.292

Ca 0.021 0.021 0.027 0.030

Total 8.032 8.028 8.021 8.026

Type of garnet

Alm 87.93 87.69 86.17 80.50

Pyr 7.78 8.87 7.78 9.76

Grs 0.69 0.66 0.86 0.97

Sps 3.57 2.75 5.17 8.74

And 0.03 0.03 0.03 0.04

Ca–Ti Gt 0.00 0.00 0.00 0.00

Total l00.00 100.00 100.00 100.00

gradient the SWIR spectra were initially filtered using 
TSA to select only the dark mica mineral group. 
Two absorption features of biotite, 2,254 nm and 
2,357 nm, appear to move in concert towards 
longer wavelengths with increasing iron content. 
The 2,254 nm Fe–OH absorption feature was 
most sensitive. Consequently, in addition to varying 
abundance of dark mica, a PFIT calculation on 
the 2,254 nm feature was used as a proxy to track 
variation in iron content.

The chlorite investigation used tools provided by 
TSA in TSG to identify variations in the abundance 
of Fe-, Fe–Mg- and Mg- chlorites. In addition, the 
wavelength of the 2,252 nm absorption feature 
was calculated as a geochemical gradient indicator 
with an increasing iron content shifting the feature 
to longer wavelengths (Pontual, Merry and Gamson 
1997).

In the Kanmantoo data many of the calculated 
gradient factors showed a high degree of variance. 
To clarify the overall trends, a smoothing filter of a 
moving average over a 5 m interval was applied.

Results
The trends identified from the six mineral species 
showed systematic changes moving from distal 
to proximal locations in relation to copper 
mineralisation. The results of two holes (Fig. 4) were 
chosen to best illustrate the patterns of mineralogical 
changes within 300 m of mineralisation.

White  mica (not shown) tends to be far-distal to 
mineralisation – up to 300 m away from copper – 
and absent closer. Where the chemistry of the white 
mica tends towards phengitic composition there is 
some association with gold mineralisation in late 
stage structures.

Andalusite is present mostly inboard of white mica 
but remains near-distal to the copper mineralisation, 
i.e. it is not usually found in close proximity to 
copper. The distribution of kaolinite appears to be 
antithetic to andalusite and is not related directly to 
copper mineralisation.

Electron microscopy of samples from KTDD149 
confirmed dissolution and kaolinisation of andalusite 
was more intensive below the zone of copper 
mineralisation at ~280–340 m. Small clusters of 
poorly define jarosite crystals were associated with 
thin kaolinite coatings on mineral grains throughout 
the drillhole.

Almandine has greater abundance proximal to 
mineralisation and the wavelength of the 10,710 nm 
absorption feature trends to shorter wavelengths 
closer to copper.

For biotite, both the 2,254 nm (short) and the 
2,356 nm (long) absorption features move in 
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Figure 3	 TIR spectra for andalusite and almandine 
showing the absorption features used to estimate 
occurrence and abundance.
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Figure 4	 Pattern of mineral associations surrounding copper mineralisation at the Kanmantoo deposit. Horizontal lines 
approximate position of mineralised zone. (a) KTRCD284, (b) DDH KAN 1. Colour wavelength variables have had a 5 m 
moving average smoothing algorithm applied. Histogram 0.5 m bins showing relative abundance.
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concert and copper is associated with longer 
wavelengths, and with an overall decrease in biotite 
abundance (Fig. 5).

For chlorite the chemical gradient is towards more 
iron-rich species being associated with copper 
mineralisation.

Discussion
The combination of varying mineral abundance 
and change in mineral chemistry for key 
minerals identified from spectral data provides 
an indication of geochemical gradients that 
show a correspondence with proximity to copper 
mineralisation for the Kanmantoo copper orebodies. 
The absolute values vary from one drillhole to the 
next but evidence of a geochemical gradient is 
consistently observed. In hydrothermal systems, 
chemical change signalled by the presence of a 
geochemical gradient may be significant in ore 
forming processes, irrespective of the magnitude 
of the gradient (Keith Scott, CSIRO, pers. comm., 
1997).

In the case of garnet, the shift in wavelength of the 
10,710 nm absorption feature suggests a proximal 
almandine and more distal spessartine composition, 
although an increase in andalusite content and 
overlap of spectral features may be a factor in the 
apparent longer wavelengths of absorption for more 
distal garnet. Irrespective of the explanation, the 

gradient remains consistent with longer wavelength 
features for garnet being distal and shorter 
proximal. The increase in garnet content proximal 
to mineralisation appears to be at the expense of 
andalusite and biotite.

Andalusite dissolution with associated kaolinite 
precipitation (Fig. 6) is interpreted as the result of a 
relatively low-temperature acidic fluid, post copper 
mineralisation. Topotactic crystallisation of kaolinite 
on biotite, aligned along biotite cleavage (Fig. 7) 
is consistent with alteration by a late hydrothermal 
fluid. The relatively minor kaolinite/jarosite 
alteration is not considered to be part of the copper 
mineralising system, but may be indirectly related in 
that the same fluid pathways were accessed and the 
acidity due to partial oxidation/dissolution of sulfides 
in this part of the system.

An outcome of the observations described above is 
a decision tree that incorporates spectral analysis 
to inform a future drill program (Fig. 8). The two 
gradients being measured are: (i) relative mineral 
abundance; and (ii) relative change in mineral 
chemistry. Moving through the diagram from left to 
right and top to bottom the presence of white mica 
places the sample distal to copper mineralisation 
by the order of 200 m. If the white mica shows a 
shift in the wavelength of the 2,200 nm feature 
(2200W) towards phengitic composition, gold may 
be associated. If white mica is absent but andalusite 
is present this places the sample in-board of white 

2247 2250 2253 2256 2259 2262
10,0002346

2349

2352

2355

2358

2361

2364

2367
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Copper mineralistion (ppm)Biotite long (2,356 nm)
99,220

205092_016

Figure 5	  Relationship between wavelength of the absorption minima for the 2,254 nm and 2,357 nm of biotite in relation 
to copper mineralisation shown by coloured points, KTDD149.
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Figure 6	 Electron micrograph of dissolution features in andalusite 
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Figure 8	 Decision tree to assist in the appraisal of proximity to copper mineralisation near the Kanmantoo copper deposit.

Figure 7	  Electron micrograph of topotactic crystallisation of 
kaolinite (kao) on biotite (bio) aligned along biotite cleavage, 
KTDD149, 512.64 m. (Photo 416787)
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mica but still distal to mineralisation. In-board of 
andalusite, almandine garnet, Fe rich and Mn poor, 
forms proximal to mineralisation. Examining the 
more pervasive biotite and chlorite species, the shift 
to longer wavelengths of key absorption features 
is indicative of iron enrichment. In addition to the 
change in chemistry, biotite also is usually less 
abundant proximal to mineralisation.

Conclusion
The spectral mineralogy study of the near-mine 
environment at the Kanmantoo copper deposit 
identified geochemical/mineral gradients defined 
by mineral associations showing consistent patterns 
proximal to copper mineralisation. Useful minerals 
for spectral analysis included kaolin/jarosite, white 
mica, biotite, andalusite, almandine and chlorite.

A geochemical gradient of increasing iron content 
in biotite, garnet and chlorite most closely correlates 
with zones of copper mineralisation. Mineralogical 
changes in proximity to sulfide mineralisation 
include increased almandine abundance at the 
expense of andalusite and biotite.

The persistent presence of kaolinite/jarosite 
alteration is interpreted to result from circulation of 
a moderately low temperature hydrothermal fluid 
at comparatively shallow crustal level. This may be 
associated with the mineralisation, or alternatively is 
a younger fluid event, but either are consistent with 
late stage hydrothermal activity of a mineral system 
that developed post-metamorphism. Spectral results, 
however, provide few additional insights on the 
origin of the copper mineralisation.

Continuous spectral data of drill samples using 
the HyLogging system was shown to be effective 
in identifying patterns in the mineralogy that have 
consistent spatial relationship with known copper 
mineralisation. Consequently, this offers a useful 
tool that could be applied systematically to the 
interpretation of future drill sampling in the vicinity 
of the Kanmantoo Mine.
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Coompana Province

Introduction
The Coompana Province is a completely buried 
crustal block that occurs at the nexus of the West, 
South and North Australian cratons. However, very 
little is known about the region. The Geological 
Survey of Western Australia drilled a series of holes 
into the westernmost part of the province, which 
provided some insights into the architecture and 
geological history (Spaggiari and Smithies 2015). 
Yet this left a large part of the province as unknown. 
This was addressed with a recent program to 
acquire and interpret geological, geochemical and 
geophysical data for the Coompana Province in 
western South Australia (Fig. 1). Results and some 
interpretations have been released in a recent MESA 
Journal article and a workshop abstract volume 
(Dutch, Pawley et al. 2018; Dutch, Wise et al. 2018). 
This paper will expand on these publications and 
present the broader implications of the work that 
was undertaken in the Coompana Province. Whilst 
insights into the geology of the eastern Coompana 
Province have been hinted at with existing data from 
sparse drilling (Neumann and Korsch 2014; Fraser 
and Neumann 2016; Travers 2015) and correlations 
with the western Coompana, Madura and Musgrave 
provinces, the eastern Coompana Province was still 
a gap in the understanding of Proterozoic Australia 
(Fig. 2; Spaggiari et al. 2015).

Data acquisition in the South Australian part of 
the Coompana Province commenced in 2013 with 
the 13GA-EG1 seismic line, linking the central 
Gawler Craton, with the Albany–Fraser Orogen in 
Western Australia (Dutch, Pawley and Wise 2015). 
The seismic line imaged, for the first time, the 
architecture of the western margin of the Gawler 
Craton and the contact with the largely unknown 
basement rocks of the Coompana Province 
(Doublier et al. 2015). Complementing the deep-
crustal imaging seismic line was a co-located 
broadband magnetotellurics (MT) profile (Thiel, 
Wise and Duan 2015; Thiel, Wise and Duan 2018). 
In the Coompana Province the seismic and MT 

profiles image a complex story of major crustal-
scale structures and extensional fabrics exploited 
and overprinted by multiple generations of intrusive 
magmatism (Pawley, Wise, Dutch et al. 2018; Thiel, 
Wise and Duan 2018; Wise and Thiel 2018).

Regional potential field surveys were acquired in 
2015 (aeromagnetics and radiometrics; Heath, 
Reed and Katona 2015) and 2017 (ground gravity; 
Heath and Wise 2017). Preliminary interpretation 
of the aeromagnetic imagery showed a number 
of broad geophysical domains and possible 
reversely magnetised intrusions (Wise, Pawley and 
Dutch 2015) that would be the focus of the 2017 
Coompana Drilling Project (Fig. 3; Dutch, Pawley et 
al. 2018).

Geological, geochemical and geophysical 
characterisation of the thickness, extent and nature 
of the cover sequences blanketing the entirety of the 
Coompana Province (Dunn and Waldron 2014; Foss 
et al. 2018; Gonzalez-Alvarez et al. 2018; Heath 
et al. 2018; Krapf and Gonzalez-Alvarez 2018; 
Meixner et al. 2018; Noble et al. 2018) aided in 
the planning of the Coompana Drilling Project, 
and provided fundamental datasets in this poorly 
understood region.

In this paper we will synthesise the results of the 
large body of precompetitive data acquired (Dutch, 
Pawley et al. 2018; Dutch, Wise et al. 2018) and 
propose a geological framework of the basement 
to the eastern Coompana Province. We will also 
present a model for the formation of the prominent 
and enigmatic Coompana Magnetic Anomaly, and 
discuss the metallogenic potential of the region.

Geological framework
The Coompana Drilling Project (Fig. 3; Dutch, 
Pawley et al. 2018) provided fundamental 
geological controls that could be used to constrain 
the geophysical interpretations (e.g. seismic: Pawley, 
Wise, Dutch et al. 2018; and aeromagnetics: Wise, 
Pawley and Dutch 2015). The lithological and 

https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wcir/Record?r=0&m=1&w=catno=2040339
https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wcir/Record?r=0&m=1&w=catno=2040339
https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wcir/Record?r=0&m=1&w=catno=2040384
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Figure 1	 Regional total magnetic intensity and Bouguer gravity images showing the location of the Coompana Province 
with respect to the surrounding geological provinces. Also highlighting the large reversely polarised Coompana Magnetic 
Anomaly.

petrographical information in the drill core (Pawley, 
Wise, Jagodzinski et al. 2018) was combined with 
geochronology (Jagodzinski and Bodorkos 2018) 
to create a stratigraphy (Wise, Pawley and Dutch 
2018a). Geochemical and isotopic analysis of the 
core then allowed the geological history of the 
region to be unravelled (Dutch 2018; Hartnady et 
al. 2018). Potential field datasets were then used to 

determine the spatial extents of the units, resulting 
in an interpretive solid geology map (Fig. 4; Wise, 
Pawley and Dutch 2018b). Fundamentally, the 
evolution of the eastern Coompana Province can be 
divided into four main geodynamic events (Fig. 5), 
which are summarised in this section. For more 
detail, the reader is referred to Dutch, Wise et al. 
(2018).
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Figure 2	 Time–space plot showing regional correlations in magmatic–sedimentation–deformation events, and the pre-
existing knowledge gap in the South Australian section of the Coompana Province (compiled from: Dutch, Pawley and Wise 
2015; Fraser and Neumann 2016; Wingate et al. 2015a, 2015b; Spaggiari and Smithies 2015; Neumann and Korsch 2014).

1 Oceanic crust development
Nd and Hf isotope data from the Coompana 
Province (Dutch 2018; Hartnady et al. 2018; 
Kirkland et al. 2017) have revealed a putative 
c. 2000–1900 Ma mantle extraction event that 
appears to be consistently represented in rocks from 
across the province and the neighbouring Musgrave 
and Madura provinces. As signatures of this event 
appear relatively time-constrained and of a juvenile 
nature, Hartnady et al. (2018) and Kirkland et al. 
(2017) interpret this event to represent oceanic 
crust development outboard of the Gawler Craton 
in the period c. 2000–1900 Ma, with the crust 
subsequently reworked and destroyed during later 
magmatism.

2 Prolonged arc–subduction cycles
The oldest rocks dated in the Coompana Province 
are the c. 1618 Ma Koomalboogurra Suite, of the 
Toolgana Supersuite (Dutch 2018; Jagodzinski 
and Bodorkos 2018; Wingate et al. 2015a). The 
monzogranitic orthogneisses are comparable in 
age and geochemistry to the St Peter Suite in the 
southern Gawler Craton, and have been interpreted 
to represent subduction-related granites, developed 
on the edge, or outboard of the Gawler Craton 
(Dutch 2018; Swain et al. 2008). The c. 1526 Ma 
migmatitic orthogneisses of the Bunburra Suite 
represent a newly reported magmatic event in this 
region, with juvenile isotopic character and primitive 
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Figure 4	  Interpreted geology map of the eastern Coompana Province (Wise, Pawley and Dutch 2018b).
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Figure 5	  Geodynamic ‘event’ plot for the eastern Coompana Province compiled from the results presented in Dutch, Wise et 
al. (2018).
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geochemical signatures (Dutch 2018; Jagodzinski 
and Bodorkos 2018). Dutch (2018) interprets the 
Bunburra Suite to be derived from a subduction-
enriched lithospheric mantle source.

The A-type c. 1505–1487 Ma Undawidgi Supersuite 
(Wingate et al. 2015a), including the newly named 
Gilgerabbie Suite in the eastern Coompana 
Province (Wade et al. 2007), is interpreted to be 
the magmatic product of intracontinental extension 
(Smithies et al. 2015) after cessation of subduction 
in the older, c. 1526 Ma event.

As age constraints on the subduction-related rocks 
(above) appear to young from east to west – c. 
1618 Ma in the east, to c. 1400 Ma and c. 1390 
Ma in the west (Madura Province: Smithies et al. 
2015; Wingate et al. 2015b; Musgrave Province: 
Smithies et al. 2010) – we interpret the Coompana 
and Madura provinces to have their origin in 
broadly westward-migrating (i.e. back-stepping), 
approximately north–south-trending arc ribbons 
developed on the proposed oceanic crust between 
the Gawler Craton and Yilgarn Craton (Dutch et al. 
2016).

3 Intracontinental meltdown
In the period c. 1200–1070 Ma, magmatic 
rocks with a wide variety of lithology, age and 
compositions were intersected in drillholes of the 
Coompana Drilling Project (Dutch, Wise et al. 
2018).

1189–1141 Ma
•	 undifferentiated anatectic granites in CDP001 

and CDP004

•	 c. 1174 Ma foliated Merdayerrah Shoshonite in 
CDP004

•	 c. 1150 Ma massive porphyritic monzo- to 
syenogranitic intrusions of the Koonalda Suite in 
CDP003 and CDP005

•	 equigranular biotite micro-syeno- to 
monzogranitic Albala-karoo Syenogranite, 
forming late crosscutting intrusions in CDP003 
and CDP005

•	 peraluminous Nb-, Ta-enriched granite dykes in 
CDP001.

c. 1074 Ma

•	 quenched basalt dykes composed of primarily 
plagioclase with clinopyroxene, opaques and 
mesostasis (dykes in CDP003 and CDP006)

•	 olivine basalts (intrusive rock in CDP002, 
extrusive rock in CDP008 and CD 1)

•	 two-pyroxene basalts (intrusive rocks in CDP007, 
BN2 and BN1).

The relatively juvenile ɛHf1174–1140 Ma values of 
the Merdayerrah Shoshonite and Koonalda Suite 
melts suggest little or no assimilation of any pre-
1900 Ma crust, and appear to be the product of 
mantle input and assimilation of crust similar to the 
Bunburra and Koomalboogurra suites (Dutch 2018).

In contrast, mantle melts at c. 1074 Ma (Giants 
Head Suite: Jagodzinski and Bodorkos 2018) show 
evolved (strongly negative) ɛHf1074 Ma values, 
indicating that contamination by a >1900 Ma 
crustal substrate is required (Dutch 2018). We 
therefore interpret a highly reflective lower crustal 
unit in the seismic section, coincident with the top of 
a subvertical mantle conductor (Fig. 6), represents 
a relic of possible Gawler Craton crust beneath 
the Coompana Province, and is the contaminant in 
ascending mantle melts.

Seismic and MT signatures are interpreted to signify 
changing melt sources between the major periods of 
magmatism at c. 1140 Ma and c. 1074 Ma (Fig. 6). 
As c. 1140 Ma melt from extensive conductive/
non-reflective lower crustal – upper mantle MASH 
(melting–assimilation–storage–homogenisation) 
chambers beneath the Coompana Province (e.g. 
Fig. 6) was mobilised upward, melt pathways in 
the hanging wall of the Palinar Shear Zone (Fig. 6) 
destroyed pre-existing fabrics in the mid–upper crust 
(e.g. Wise and Thiel 2018) and reached the near-
surface, crystallising to form plutons of the Koonalda 
Suite (Pawley, Wise, Dutch et al. 2018; Thiel, Wise 
and Duan 2018).

The varied geochemical signatures exhibited by 
mafic rocks of the c. 1074 Ma Giants Head Suite 
(Dutch 2018) are suggestive of a heterogeneous 
lithospheric mantle. Evidenced by the significant 
negative gravity anomaly associated with the 
Coompana Province (Fig. 1), it is possible that 
delamination of the mafic residual components of 
c. 1200–1140 Ma MASH chambers in the lower 
crust into the lithosphere provided a catalyst for 
melting of heterogeneous source material for the 
c. 1074 Ma magmatism.

Development of thick continental lithosphere and 
metasomatism of the lithospheric mantle associated 
with c. 1620–<1500 Ma arc development, and 
a widespread mantle heat source at c. 1200 Ma 
were the likely catalysts for a >100 My period of 
magmatism between c. 1200 Ma and c. 1074 Ma.

4 Sedimentation
Post-dating the last major magmatic episode in the 
Coompana Province (1074 Ma), sedimentation 
in the Neoproterozoic–Cambrian Officer Basin, 
the Permian Denman Basin, the mid-Jurassic to 
late-Cretaceous Bight Basin and the Cenozoic 
Eucla Basin blanketed the Coompana Province. 
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Magnetic source estimates (Foss et al. 2017), cover 
geophysics (Heath et al. 2018; Meixner et al. 2018) 
and drillhole constraints suggest that the cover 
thickness across the southern Coompana Province 
is shallowest (<250 m), whilst cover thickness 
exceeds 1,300 m in the Denman Basin to the east, 
and 2,500 m in the northern Coompana Province, 
beneath the Officer Basin.

Coompana Magnetic Anomaly
The source of the Coompana Magnetic Anomaly, a 
~50 km wide, circular, reversely polarised anomaly 
in the southern Coompana Province has been the 
topic of debate since it was first identified by widely 
spaced aeromagnetic data in the early 1970s. 
Drilling in the early 1980s targeted ~1–2 km 
wide satellite anomalies, with mafic volcanics and 
intrusive rocks being returned from below the 
basement unconformity (Shell Co. of Australia Ltd 
1983; Carpentaria Exploration Co. Pty Ltd 1982a, 
1982b). An early attempt to ascertain the age of 
these volcanics using Sm–Nd isochrons gave a 
poorly constrained age of c. 859 ± 66 Ma (Travers 
2015). Accurate U–Pb dating of these mafic rocks 
was not possible until drillhole CDP002 (Dutch, 
Jagodzinski et al. 2017) returned massive olivine 
dolerite and microgabbro from beneath the 
basement unconformity. A fractionated interval 
close to the top of the basement interval returned 
a small population of zircon, and was dated with 
a magmatic crystallisation age at 1074 ± 6 Ma 
(Jagodzinski and Bodorkos 2018). The age of 
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Figure 6	 Overlain seismic section (13GA-EG1) and 2D MT inversion depicting the crustal structure and differing melt 
sources and pathways for c. 1140 Ma and c. 1174 Ma magmatism (modified after Pawley, Wise, Dutch et al. 2018; Thiel, 
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these rocks indicates that they are part of the c. 
1078–1070 Ma Warakurna Supersuite (Howard 
et al. 2011; Wingate, Pirajno and Morris 2004), 
significantly increasing the extent of the Warakurna 
Large Igneous Province (Alghamdi et al. 2018; 
Wingate et al. 2004). Magnetisation studies on 
the reversely polarised anomalies caused by the 
satellite bodies intersected in previous drilling and 
in CDP002 suggest that magnetisation directions, 
whilst variable, are consistent with an extended 
period of magmatism, rather than multiple discrete 
events (Foss et al. 2018). This therefore implies 
that satellite bodies, and the Coompana Magnetic 
Anomaly, are all likely to be temporally related to 
the CDP002 olivine dolerite–microgabbro.

Of particular interest are the gravity and magnetic 
signatures of the satellite bodies and the Coompana 
Magnetic Anomaly. The satellite bodies have 
reversely polarised magnetic anomalies that 
are spatially associated with positive gravity 
anomalies, implying that the causative body is 
both strongly magnetic and dense, e.g. the olivine 
dolerite–microgabbro in CDP002. In contrast, the 
Coompana Magnetic Anomaly displays a similarly 
reversely polarised high intensity magnetic anomaly, 
but is not spatially associated with a positive gravity 
anomaly (Foss et al. 2018). As the body causing the 
Coompana Magnetic Anomaly is strongly magnetic, 
we propose that initially, this was a mafic–ultramafic 
body that has undergone a process to remove the 
high-density component.
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Foundering vs serpentinisation, 
removal vs alteration
Whilst an increase in the thickness of a sedimentary 
succession is required to satisfy low-density 
responses at the cover–basement interface (Foss 
et al. 2018), a process to significantly reduce the 
density of a mafic–ultramafic magmatic body is 
required to achieve the current density-neutral state 
with the surrounding host rocks. In both cases, 
pluton differentiation and stratification is required 
to have concentrated a mafic–ultramafic cumulate 
towards the base of the magma chamber, and 
an upper layer of predominantly plagioclase and 
magnetite.

We propose two possible, not mutually exclusive, 
mechanisms for the apparent lack of this layer 
remaining in situ – foundering and serpentinisation 
(Fig. 7).

Foundering. As the denser cumulate phase built 
up, gravitational instabilities developed between 
the cumulate layer(s) and the less-dense granitic–
gneissic host rocks within the weakened thermal 
aureole of the intrusion (Roman and Jaupart 2016). 
Negative buoyancy and associated Rayleigh-Taylor 
instabilities enabled the dense cumulate phase to 
progressively founder through feeder zones and 
weakened host rocks, thereby physically removing 
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Figure 7	 Schematic cartoons of the proposed alternative 
models generating the unusual signatures of the plutonic 
body interpreted to be the cause of the Coompana 
Magnetic Anomaly. (a) Foundering model, where 
progressive removal of a dense cumulate reduces the net 
density of the pluton. (b) Serpentinisation model, where 
fluid infiltration at the intersection of fault–shear systems 
alters the dense basal layer of the differentiated pluton, 
producing serpentinite + magnetite.



34 MESA Journal 88   2018 – Issue 3 

New geology

the dense material from the crystallising pluton (e.g. 
Glazner 1994; Roman and Jaupart 2016). As no 
significant long-wavelength (lower crustal) positive 
gravity anomaly is observed in the Coompana 
Province (Fig. 1), it is possible that complete removal 
of the foundered cold, dense cumulate into the 
mantle was achieved.

Serpentinisation. Pervasive alteration of the mafic–
ultramafic cumulate could, if on a large enough 
scale, reduce the density of the basal layer to the 
plutonic body, whilst also generating magnetite, 
required for the high-intensity magnetic anomaly. 
Such alteration would require significant volumes 
of fluid to produce serpentinite on this scale. The 
Coompana body sits at the intersection of the 
crustal-scale Palinar Shear Zone and a significant 
NW–NNW-trending structure set. Fluids may have 
been focused at the intersection of these structures, 
enabling serpentinisation. Significant pre- and post-
magmatic hydrothermal alteration is observed within 
the Palinar Shear Zone to the southwest (CDP006; 
Pawley, Wise, Jagodzinski et al. 2018).

Metallogenic implications
The program of data acquisition in the Coompana 
Province has implications for the prospectivity 
of the region, as prior to 2013, the sum total of 
prospectivity indicators were some interesting, but 
poorly resolved geophysical anomalies in a region 
entirely blanketed by sedimentary cover. Systematic 
data acquisition and development of the geological 
framework described above has identified several 
factors that raise the prospectivity of the region:

•	 The cover thickness has been constrained by 
drillholes and multiple geophysical techniques 
(Foss et al. 2017, 2018; Meixner et al. 2018). 
Cover thickness is less than 400 m for a large 
region in the southern Coompana Province, and 
decreases to ~200 m in places, highlighting the 
accessibility of the basement rocks.

•	 Major crustal-scale shear zones cross the 
Coompana Province, and are interpreted to 
represent boundaries between lower crustal units 
of differing ages and compositions (Dutch 2018; 
Pawley et al. 2018). Domain-bounding structures 
have been strongly linked to the spatial location 
of mineral deposits in places such as the Yilgarn 
Craton (Mole et al. 2013). Significant poly-phase 
hydrothermal alteration is observed in drillhole 
CDP006, located within one such structure, the 
Palinar Shear Zone (Dutch, Pawley et al. 2017; 
Pawley, Wise, Dutch et al. 2018; Pawley, Wise, 
Jagodzinski et al. 2018).

•	 Geochronology has revealed that mafic rocks of 
the Giants Head Suite (Dutch 2018; Jagodzinski 
and Bodorkos 2018; Wise, Pawley and Dutch 
2018a) are temporal equivalents of the Giles 
Complex in the Musgrave Province, and part 

of the larger Warakurna Supersuite. The Giles 
Complex is host to the Nebo-Babel deposit in the 
western Musgrave Province (Godel et al. 2011). 
The temporal (and genetic) association with the 
Giles Complex raises the Ni–Cu – platinum group 
elements potential of the Giants Head Suite.

•	 Shoshonitic magmatism (CDP004, c. 
1170 Ma Merdayerrah Shoshonite; Dutch 
2018; Jagodzinski and Bodorkos 2018; Pawley, 
Wise, Jagodzinski et al. 2018; Wise, Pawley 
and Dutch 2018a) provides a link between 
previously enriched lithospheric mantle and the 
crustal magmatism. Magmatism with shoshonitic 
affinities has been found to be associated with 
Cu/Cu–Au deposits globally (e.g. Bingham 
Canyon Cu–Au–Mo; Groves and Santosh 2015).

•	 Peraluminous granites from drillhole CDP001 
in the southern Coompana Province (Dutch, 
Pawley et al. 2017) exhibit elevated Rb, Nb and 
Ta values, and relative depletions in Ba and Sr. 
These signatures are typical of biotite–muscovite 
granites associated with Nb–Ta mineralisation 
(Dutch 2018; Pollard 1989). In addition, low K/
Rb ratios, typical of late-magmatic pegmatites 
(Shaw 1968), high F concentrations, and 
albite–sericite–chlorite–fluorite hydrothermal 
alteration assemblages, suggests a highly acidic 
hydrothermal fluid was able to remobilise Nb and 
Ta (Zaraisky, Korzhinskaya and Kotova 2010), 
elevating potential for these rare metals.

Conclusion
The Coompana Project represents a major 
precompetitive geoscience program in a covered, 
greenfield region which has seen very little scientific 
or exploration attention. The results of this significant 
precompetitive geoscience data acquisition program 
and workflow have been synthesised into a new 
geological and geodynamic framework that puts 
the Coompana Province into regional context and 
fills a knowledge gap in our understanding of 
Proterozoic Australia. From the data, we are able to 
recognise four main geodynamic events affecting 
the Coompana Province, and relate them to the 
surrounding Proterozoic terranes in the Musgrave 
and Madura provinces. The development of a 
geodynamic framework and broader links with 
surrounding metallogenic provinces have allowed us 
to identify key indicators of the mineral prospectivity 
for this previously unknown region.
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